451 research outputs found

    Continuum in the Excitation Spectrum of the S=1 Compound CsNiCl_3

    Full text link
    Recent neutron scattering experiments on CsNiCl_3 reveal some features which are not well described by the nonlinear sigma model nor by numerical simulations on isolated S=1 spin chains. In particular, in real systems the intensity of the continuum of multiparticle excitations, at T=6K, is about 5 times greater than predicted. Also the gap is slightly higher and the correlation length is smaller. We propose a theoretical scenario where the interchain interaction is approximated by a staggered magnetic field, yielding to a correct prediction of the observed quantities.Comment: 4 pages, 2 figures (.eps), RevTe

    The dimer-RVB State of the Four-Leg Heisenberg Ladder: Interference among Resonances

    Get PDF
    We study the ground state of the 4-leg spin ladder using a dimer-RVB ansatz and the Lanczos method. Besides the well known resonance mechanism between valence bond configurations we find novel interference effects among nearby resonances.Comment: 4 pages, RevTex, 7 eps fig

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    Analytic Relations between Localizable Entanglement and String Correlations in Spin Systems

    Full text link
    We study the relation between the recently defined localizable entanglement and generalized correlations in quantum spin systems. Differently from the current belief, the localizable entanglement is always given by the average of a generalized string. Using symmetry arguments we show that in most spin 1/2 and spin 1 systems the localizable entanglement reduces to the spin-spin or string correlations, respectively. We prove that a general class of spin 1 systems, which includes the Heisenberg model, can be used as perfect quantum channel. These conclusions are obtained in analytic form and confirm some results found previously on numerical grounds.Comment: 5 pages, RevTeX

    A Systematic Study on Nonrelativistic Quarkonium Interaction

    Full text link
    recently proposed strictly phenomenological static quark-antiquark potential belonging to the generality V(r)=−Ar−α+κrβ+V0V(r)=-Ar^{-\alpha}+\kappa r^{\beta}+V_{0} is tested with heavy quarkonia in the context of the shifted large N-expansion method. This nonrelativistic potential model fits the spin-averaged mass spectra of the ccˉ,c\bar{c}, bbˉb\bar{b} and cc% \bar{b} quarkonia within a few MeV{\rm MeV} and also the five experimentally known leptonic decay widths of the ccˉc\bar{c} and bb% \bar{b} vector states. Further, we compute the hyperfine splittings of the bottomonium spectrum as well as the fine and hyperfine splittings of the charmonium spectrum. We give predictions for not yet observed BcB_{c} splittings. The model is then used to predict the masses of the remaining quarkonia and the leptonic decay widths of the two pseudoscalar c\bar{b%} states. Our results are compared with other models to gauge the reliability of the predictions and point out differences.Comment: 24 page

    Effective mapping of spin-1 chains onto integrable fermionic models. A study of string and Neel correlation functions

    Full text link
    We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles related in turn to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by algebraic factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a 'dual' fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we find a finite characteristic length which is an unexpected feature at the critical point. We also comment briefly the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.Comment: 28 pages, plain LaTeX, 2 EPS figure

    On c=1c=1 critical phases in anisotropic spin-1 chains

    Full text link
    Quantum spin-1 chains may develop massless phases in presence of Ising-like and single-ion anisotropies. We have studied c=1 critical phases by means of both analytical techniques, including a mapping of the lattice Hamiltonian onto an O(2) nonlinear sigma model, and a multi-target DMRG algorithm which allows for accurate calculation of excited states. We find excellent quantitative agreement with the theoretical predictions and conclude that a pure Gaussian model, without any orbifold construction, describes correctly the low-energy physics of these critical phases. This combined analysis indicates that the multicritical point at large single-ion anisotropy does not belong to the same universality class as the Takhtajan-Babujian Hamiltonian as claimed in the past. A link between string-order correlation functions and twisting vertex operators, along the c=1 line that ends at this point, is also suggested.Comment: 9 pages, 3 figures, svjour format, submitted to Eur. Phys. J.

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    Qubit Teleportation and Transfer across Antiferromagnetic Spin Chains

    Full text link
    We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to one can be achieved on very long chains at moderately small temperature.Comment: 5 pages, 4 .eps figure

    Redundancy of classical and quantum correlations during decoherence

    Full text link
    We analyze the time dependence of entanglement and total correlations between a system and fractions of its environment in the course of decoherence. For the quantum Brownian motion model we show that the entanglement and total correlations have rather different dependence on the size of the environmental fraction. Redundancy manifests differently in both types of correlations and can be related with induced--classicality. To study this we introduce a new measure of redundancy and compare it with the existing one.Comment: 6 pages, 4 figure
    • …
    corecore